If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7x)^2=784
We move all terms to the left:
(7x)^2-(784)=0
a = 7; b = 0; c = -784;
Δ = b2-4ac
Δ = 02-4·7·(-784)
Δ = 21952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21952}=\sqrt{3136*7}=\sqrt{3136}*\sqrt{7}=56\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56\sqrt{7}}{2*7}=\frac{0-56\sqrt{7}}{14} =-\frac{56\sqrt{7}}{14} =-4\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56\sqrt{7}}{2*7}=\frac{0+56\sqrt{7}}{14} =\frac{56\sqrt{7}}{14} =4\sqrt{7} $
| 45x=68 | | 98=u | | -1.46-x=1 | | 8=w÷5 | | (30+4x)=180 | | 4x+11–9x–19=-38 | | 28+x+31=90 | | X+2x+x+4=-32 | | 12x-20=18- | | -5(p3/5=-4 | | -8m-7=-39 | | (x+59)+(x+63)+(80)=180 | | 4n+2=5n+18 | | 3=11m+6 | | 48=3(10+c) | | (x.15)=250 | | 18X-(8x-7)=-+67 | | -2/3(x-3)-1x=8 | | 7=-m-4 | | 2(6b+23)=10 | | -5-11b=8 | | 3x+8=3x+52 | | 3x+8=3x+51 | | 14=8m-8 | | 3x+8=3x+49 | | 3x+8=3x+48 | | 4k+8=-3 | | 3x+8=3x+47 | | 2(4a+7)=46 | | 3x+8=3x+46 | | (x+45)+(x+56)+(81)=180 | | 3x+8=3x+44 |